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Recap – motivating example
[Brader et al., 2008]
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Recap – causal DAG of a stripped-down example

media framing anxiety

attitudes towards immigration

gender,
age,

education,
income
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Recap – nested counterfactual outcomes Y (a,M(a′))
[Pearl, 2001, Robins and Greenland, 1992]

A M

Y

AY = a

AM = a′ M(a′)

Y (a,M(a′))

• conceptualize the intuitive notion of changing treatment assignment
along specific pathways but not others, i.e. so-called ‘edge
interventions’ [Shpitser and Tchetgen Tchetgen, 2016]

• provide a framework that allows for model-free effect decomposition
into natural direct and indirect effects

E{Y (1)− Y (0)}︸ ︷︷ ︸
total effect

= E{Y (1,M(0))− Y (0,M(0))}︸ ︷︷ ︸
pure direct effect = NDE(0)

+E{Y (1,M(1))− Y (1,M(0))}︸ ︷︷ ︸
total indirect effect = NIE(1)

= E{Y (1,M(1))− Y (0,M(1))}︸ ︷︷ ︸
total direct effect = NDE(1)

+E{Y (0,M(1))− Y (0,M(0))}︸ ︷︷ ︸
pure indirect effect = NIE(0)
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Natural effect models
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Parameterization using natural effect models
[Lange et al., 2012, Loeys et al., 2013, Vansteelandt et al., 2012]

Extension of marginal structural models for mean nested counterfactuals that
allow for decomposition of a causal effect along multiple pathways

Linear natural effect model, e.g.,

E{Y (a,M(a′))} = η0 + η1a + η2a′ + η3aa′

E{Y (1)− Y (0)}︸ ︷︷ ︸
total effect

= E{Y (1,M(0))− Y (0,M(0))}︸ ︷︷ ︸
pure direct effect = NDE(0)

η1

+E{Y (1,M(1))− Y (1,M(0))}︸ ︷︷ ︸
total indirect effect = NIE(1)

η2 + η3

= E{Y (1,M(1))− Y (0,M(1))}︸ ︷︷ ︸
total direct effect = NDE(1)

η1 + η3

+E{Y (0,M(1))− Y (0,M(0))}︸ ︷︷ ︸
pure indirect effect = NIE(0)

η2
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Parameterization using natural effect models
[Lange et al., 2012, Loeys et al., 2013, Vansteelandt et al., 2012]

Allowing for different link functions, effects can be expressed on desired scale

Logistic natural effect model, e.g.,

logit Pr{Y (a,M(a′)) = 1} = η0 + η1a + η2a′ + η3aa′

odds{Y (1) = 1}
odds{Y (0) = 1}︸ ︷︷ ︸

total effect OR

=
odds{Y (1,M(0)) = 1}
odds{Y (0,M(0)) = 1}︸ ︷︷ ︸
pure direct effect OR = NDE(0)

expit(η1)

× odds{Y (1,M(1)) = 1}
odds{Y (1,M(0)) = 1}︸ ︷︷ ︸
total indirect effect OR = NIE(1)

expit(η2 + η3)

=
odds{Y (1,M(1)) = 1}
odds{Y (0,M(1)) = 1}︸ ︷︷ ︸
total direct effect OR = NDE(1)

expit(η1 + η3)

× odds{Y (0,M(1)) = 1}
odds{Y (0,M(0)) = 1}︸ ︷︷ ︸
pure indirect effect OR = NIE(0)

expit(η2)
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Wait, hang on a second...

Q: How can we fit this kind of model when most of the outcomes are
missing?

A M(1) M(0) Y (1,M(1)) Y (0,M(1)) Y (1,M(0)) Y (0,M(0))
1 1 M1 Y1
2 1 M2 Y2

...
...

...
...

...
...

...
n 0 Mn Yn

A: By resorting to established missing data techniques!
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Weighting-based approach
[Hong, 2010, Lange et al., 2012]

A M(1) M(0) Y (1,M(1)) Y (0,M(1)) Y (1,M(0)) Y (0,M(0))
1 1 M1 Y1 w1Y1
2 1 M2 Y2 w2Y2

...
...

...
...

...
...

...
...

...
n 0 Mn wnYn Yn

Key idea Up- (or down)-weigh individuals whose observed mediator level is more
(less) typical for the other treatment group

such that, for each treatment group, we can construct a pseudo-population of
individuals with mediator levels that would have been observed if each
individual had been assigned to the other treatment arm. This can be
achieved by weighing each observation (in an extended data set) by

Pr(M = Mi |A = a′,Ci)

Pr(M = Mi |A = a,Ci)
=

Pr(M = Mi |A = a′,Ci)

Pr(M = Mi |Ai ,Ci)
.
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Imputation-based approach
[Loeys et al., 2013, Vansteelandt et al., 2012]

A M(1) M(0) Y (1,M(1)) Y (0,M(1)) Y (1,M(0)) Y (0,M(0))
1 1 M1 Y1 Ŷ1(0,M1(1))
2 1 M2 Y2 Ŷ2(0,M2(1))
...

...
...

...
...

...
...

...
...

n 0 Mn Ŷn(1,Mn(0)) Yn

Key idea The consistency assumption that Mi(a′) = Mi for individuals assigned to
treatment A = a′ implies Yi(a,Mi(a′)) = Yi(a,Mi)

Yi(a,Mi(a′)) can then (under sufficient causal assumptions) be imputed by
fitted values from any appropriate model for E(Yi |A = a,Mi ,Ci), that is, by
the expected outcome one would have observed if individual i had been
assigned to treatment A = a instead of A = a′, but her mediator level would
have remained unaltered.
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Fitting natural effect models made easy in R
[Steen et al., 2017b]

medflex: an R package that...
• offers pain-free routes to mediation analysis and natural effect model

fitting for applied researchers
• by casting mediation analysis in a GLM framework that closely mimicks

established functionalities in R
• and thereby simplifies reporting and hypothesis testing

Figure: The medflex workflow
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Fitting natural effect models made easy in R
[Steen et al., 2017b]

• medflex 0.6-6 freely available from the Comprehensive R Archive
Network:
https://cran.r-project.org/web/packages/medflex/index.html

install.packages('medflex')

• development release 0.6-7 available from github:
https://github.com/jmpsteen/medflex

devtools::install_github('jmpsteen/medflex')

• companion paper in Journal of Statistical Software:
https://www.jstatsoft.org/article/view/v076i11

vignette('medflex')
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Weighing in practice

First ‘replicate’ the data along unobserved (a, a′) combinations (with A = a)

A a a′ M(a′) Y (a,M(a′))

1 1 1 1 M1 Y1

2 1 1 1 M2 Y2

...
...

...
...

...
...

n 0 0 0 Mn Yn

Then regress the observed outcomes Y on a and a′ (and possibly an
adjustment set C), weighed by

Pr(M = Mi |A = a′,C)
Pr(M = Mi |A = a,C)

.
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Weighing in practice
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A a a′ M(a′) Y (a,M(a′))

1 1 1 1 M1 Y1

1 1 1 0 M1 .

2 1 1 1 M2 Y2

2 1 1 0 M2 .
...

...
...

...
...

...
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n 0 0 1 Mn .
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Weighing in medflex

neWeight:
wrapper of glm function that

1 fits a model for the mediator density Pr(M|A,C)
2 replicates data along unobserved (a, a′) combinations (with A = a)

3 calculates weights
P̂r(M|A = a′,C)
P̂r(M|A = a,C)

for these combinations

library(medflex)
weightData <- neWeight(anxiety ~ factor(treat) + ..., data = framing)
head(data.frame(weightData, weights = weights(weightData)))

## id treat0 treat1 anxiety immigr weights
## 1 1 0 0 2 4 1.0000000
## 2 1 0 1 2 4 1.1897101
## 3 2 0 0 3 3 1.0000000
## 4 2 0 1 3 3 0.9799741
## 5 3 0 0 2 3 1.0000000
## 6 3 0 1 2 3 1.1476039
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Imputing in practice

Again ‘replicate’ the data along unobserved (a, a′) combinations (with A = a′)

A a a′ M(a′) Y (a,M(a′))

1 1 1 1 M1 Y1

2 1 1 1 M2 Y2

...
...

...
...

...
...

n 0 0 0 Mn Yn

Then regress imputed counterfactual outcomes Ŷ (a,M(a′)) on a and a′ (and
possibly an adjustment set C)
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Imputing in medflex

neImpute:
wrapper of glm function that

1 fits a model for the outcome mean E(Y |A,M,C)
2 replicates data along unobserved (a, a′) combinations (with A = a′)

3 imputes counterfactuals by Ê(Y |A = a,M,C) for these combinations

impData <- neImpute(immigr ~ factor(treat) * anxiety + ...,
data = framing)

head(impData)

## id treat0 treat1 anxiety immigr
## 1 1 0 0 2 3.640475
## 2 1 1 0 2 3.879241
## 3 2 0 0 3 2.854414
## 4 2 1 0 3 3.126197
## 5 3 0 0 2 2.754097
## 6 3 1 0 2 2.992863
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Fitting natural effect models in medflex

neModel:
Both neWeight and neImpute return an extended data set that readily
enables estimation of natural effects by fitting a natural effect model, e.g.,

E{Y (a,M(a′))} = η0 + η1a + η2a′ + η3aa′

either by

1 weighted regression of observed outcomes Y

E

[
Y
Pr(M|A = a′,C)
Pr(M|A = a,C)

∣∣∣∣A = a

]
neModW <- neModel(immigr ~ treat0 * treat1,

expData = weightData, se = "robust")

2 regression of imputed outcomes Ê(Y |A = a,M,C)

E
[
E(Y |A = a,M,C)|A = a′

]
neModI <- neModel(immigr ~ treat0 * treat1,

expData = impData, se = "robust")
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Connection with the mediational g-formula
[Vansteelandt, 2012]

Both weighting- and imputation-based approaches build on semi-parametric
formulations of the mediation formula [Pearl, 2001, Pearl, 2012]

E{Y (a,M(a′))|C}

=
∑
m

E(Y |A = a,M = m,C)Pr(M = m|A = a′,C)

Pearl’s main identification result for mean nested counterfactuals
(a special case of the ‘edge g-formula’ [Shpitser and Tchetgen Tchetgen, 2016])

= E

[
Y
Pr(M|A = a′,C)
Pr(M|A = a,C)

∣∣∣∣A = a,C

]
= E

[
E(Y |A = a,M,C)|A = a′,C

]
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Reducing modeling demands

E{Y (a,M(a′))|C}

=
∑
m

E(Y |A = a,M = m,C)Pr(M = m|A = a′,C)

= E

[
Y
Pr(M|A = a′,C)
Pr(M|A = a,C)

∣∣∣∣A = a,C

]
= E

[
E(Y |A = a,M,C)|A = a′,C

]
Summation or standardization over the mediator density (evaluated at a
possibly counterfactual treatment level A = a′) is either obtained

1 by re-weighting observed outcomes according to the counterfactual
mediator density [Hong, 2010]

2 by summing over the empirical mediator density [Albert, 2012]

Unlike direct application of the mediation formula, which requires correct
specification of both a mediator density model (i) and a model for the
outcome mean (ii), the weighting- and imputation-based formulations require
only a single correctly specified working model (either (i) or (ii), respectively),
at the expense of correct specification of a natural effect model.
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Weighting or imputing?
[Vansteelandt, 2012]

Consistent estimates can be obtained for both approaches upon adequate
specification of the natural effect model and either (i) or (ii)

1 Weighting-based approach
(-) requires adequate specification of mediator density (rather than

just its expectation)
(-) tends to yield less stable results due to weight instability (especially

for continuous M)
(+) standard errors more honestly reflect extrapolation uncertainty

due to strong C −M or A−M associations
2 Imputation-based approach

(-) potential incompatibility between imputation model and natural
effect model may lead to misspecification bias −→ aim for
sufficiently rich imputation model (e.g. by using ensemble learner)

(-) risk for extrapolation bias due to strong C −M or A−M
associations

(+) does not require any distributional assumptions on the mediator
(+) yields more precise estimates (given adequate model specification)
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Recap – equivalence under strict linearity

Closed-form expressions for natural direct and indirect effects in terms of
parameters of strictly linear working models (i) and (ii)

E(M|A,C) = β0 + β1A+ β2C (i)

E(Y |A,M,C) = θ0 + θ1A+ θ2M + θ3C (ii)

can be obtained by plugging (i) and (ii) in the mediation formula

E{Y (a,M(a′))|C} =
∑
m

E(Y |A = a,M = m,C)Pr(M = m|A = a′,C)

=
∑
m

(θ0 + θ1a + θ2m + θ3C)Pr(M = m|A = a′,C)

= θ0 + θ1a + θ2E(M|A = a′,C) + θ3C

= θ0 + θ1a + θ2(β0 + β1a′ + β2C) + θ3C

= (θ0 + θ2β0) + θ1a + θ2β1a′ + (θ3 + θ2β2)C
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Recap – equivalence under strict linearity

E{Y (a,M(a′))|C} = (θ0 + θ2β0) + θ1a + θ2β1a′ + (θ3 + θ2β2)C

This corresponds with natural effect model parameterization

E{Y (a,M(a′))|C} = δ0 + δ1a + δ2a′ + δ3C ,

where δ1 = θ1 and δ2 = θ2β1.

Note that under strict linearity, we obtain the well-known LSEM plug-in
estimators for the direct and indirect effects (i.e. product-of-coefficients).
[Baron and Kenny, 1986]

However, linearity rarely applies in practice...
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Complication 1: non-linearities

24/56



Beyond linear settings: example 1
[VanderWeele and Vansteelandt, 2009]

Suppose that we allow A and M to interact in their effect on the outcome (in
order to allow for mediated interaction), i.e. we specify working model (ii) as

E(Y |A,M,C) = θ0 + θ1A+ θ2M + θ3AM + θ4C .

Combined with (i), this yields

E{Y (a,M(a′))|C} =
∑
m

(θ0 + θ1a + (θ2+θ3a)m + θ4C)Pr(M = m|A = a′,C)

= θ0 + θ1a + (θ2+θ3a)E(M|A = a′,C) + θ4C

= θ0 + θ1a + (θ2+θ3a)(β0 + β1a′ + β2C) + θ4C

= (θ0 + θ2β0) + (θ1+θ3β0)a + θ2β1a′+(θ3β1)aa′

+ (θ4 + θ2β2)C+(θ3β2)aC ,

which involves effect modification by C , even though such ‘moderation’ was
not postulated in (i) nor (ii).
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Beyond linear settings: example 2
[Vansteelandt et al., 2012]

For binary M and Y , combining respective logistic working models

logit Pr(M = 1|A,C) = β0 + β1A+ β2C
logit Pr(Y = 1|A,M,C) = θ0 + θ1A+ θ2M + θ3C

yields

E
{
Y (a,M(a′))|C

}
= expit (θ0 + θ1a + θ2 + θ3C) expit

(
β0 + β1a′ + β2C

)
+ expit (θ0 + θ1a + θ3C)

{
1− expit

(
β0 + β1a′ + β2C

)}
,

a result that does not translate into a simple (logistic) natural effect model
parameterization and that leads to risk difference and odds ratio effect
expressions of natural direct and indirect effects that again carry an intricate
dependence on covariates C (and possibly continuous treatment A).
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Beyond linear settings...

These examples illustrate that, as soon as non-linearities enter the picture,
things get much more involved as (even simple) working models (i) and (ii)
don’t usually combine into a simple natural effect model structure, i.e. they
tend to produce complex expressions of natural direct and indirect effects.

As a result, a fully parametric approach to the mediation formula that
demands adequate model specification of both (i) and (ii) can make

1 results difficult to report

2 interesting hypotheses essentially impossible to test1

1as it turns out difficult (or even impossible) to come up with combinations of (i) and (ii)
that yield effect expressions that are constant at all covariate levels of C (or continuous A), such
that corresponding null hypotheses are guaranteed to be rejected in sufficiently large samples
(g-null paradox [Robins and Wasserman, 1997])
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Complication 2: multiple mediators
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Dealing with treatment-induced confounding
or causally ordered mediators

In the previous analysis, we assumed that no un/measured confounders of the
mediator-outcome relation are affected by treatment. This allowed for
model-free identification and sensible interpretation of the natural in/direct
effect (without imposing parametric assumptions). However, any mediator L
that is known or assumed to preceed the mediator-of-interest M, can be
suspected to be such a treatment-induced confounder.

media framing

beliefs

anxiety

attitudes towards immigration

gender,
age,

education,
income
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Dealing with treatment-induced confounding
or causally ordered mediators

Testing conditional independence of mediators using DAGITTY

age

anxiety

educgender

immigr

income

p_harm

treat

−6 −4 −2 0 2 4 6

test statistic (95% CI)

age _||_ gender

age _||_ educ

age _||_ treat

age _||_ income

anxiety _||_ p_harm | age, educ, gender, income, treat

income _||_ treat

educ _||_ treat

educ _||_ gender

educ _||_ income

gender _||_ treat

gender _||_ income
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Dealing with treatment-induced confounding
or causally ordered mediators

AY = a

AM = a′
M

L

Y

E{Y (a,M(a′))}
= E{Y (a,L(a),M(a′,L(a′)))}

is not generally identifiable because of
conflicting edge intervention wrt L
(i.e. conflicting hypothetical treatment
assignments that feed into L)

−→ L acts as a so-called recanting witness2 [Avin et al., 2005]

Essentially, the difficulty is that L fulfills a double role, i.e. it acts as both a
mediator and a confounder: two roles that require irreconcilable treatments.

2Identification of the natural indirect effect wrt M would require L to retract an earlier
statement, which allows treatment to transmit its entire effect on the mediator in order not to
block the path from A to M via L, in favour of a new statement that keeps treatment from
transmitting its effect on the outcome other than through the mediator, so as to block the path
from A to Y via L.
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Dealing with treatment-induced confounding
or causally ordered mediators

Possible solutions

1 calculate non-parametric bounds for natural direct and indirect effects in
the presence of treatment-induced confounding (only applies to some
settings that mainly involve binary variables)
[Miles et al., 2017a, Tchetgen Tchetgen and Phiri, 2014]

2 adopt a sensitivity analysis approach (mostly relies on a parametric
framework) [Daniel et al., 2015, Imai and Yamamoto, 2013]

However, these solutions aim to recover a target of inference (the natural
in/direct effect) that may not be meaningful / of practical relevance (in terms
of a hypothetical target trial)
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Dealing with treatment-induced confounding
or causally ordered mediators

3 shift focus to identifiable path-specific effects such as the partial
indirect effect, which expresses the effect that is solely mediated by M
(i.e. over and above M’s mediated effect via L)
[Huber, 2014, Miles et al., 2017b, VanderWeele and Vansteelandt, 2013,

VanderWeele et al., 2014]

ALY = a

AM = a′
M

L

Y

E{Y (a,L(a),M(a′,L(a)))}

does not involve a conflicting edge
intervention wrt L and is hence
possibly identifiable.

In addition, this target of inference is again compatible with a hypothetical
target trial that separates aspect of treatment to which only M is directly
responsive to (AM = a′) from the other aspects of treatment to which only L
and Y are directly responsive to (AY = a).
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The ‘partial’ indirect effect

Different estimation approaches may target different instances of this target
of inference. A natural effect model parameterization helps to shed light on
these subtle differences.

Given two disjoint sets of mediators {L} and {M}, consider the following
natural effect model that enables three-way decomposition of the total effect:

AY = a

AM = a′′

AL = a′
M

L

Y

E{Y (a,L(a′),M(a′′,L(a′)))}

= η0 + η1a + η2a′ + η3a′′

+ η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′
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The ‘partial’ indirect effect

AY = a

AM = a′′

AL = a′
M

L

Y

E{Y (a,L(a′),M(a′′,L(a′)))}

= η0 + η1a + η2a′ + η3a′′

+ η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′

This parameterization leads to 4 distinct instances of the partial indirect
effect, i.e.

E{Y (0,L(0),M(1,L(0)))− Y (0,L(0),M(0,L(0)))} = η3
E{Y (1,L(0),M(1,L(0)))− Y (1,L(0),M(0,L(0)))} = η3 + η5
E{Y (0,L(1),M(1,L(1)))− Y (0,L(1),M(0,L(1)))} = η3 + η6
E{Y (1,L(1),M(1,L(1)))− Y (1,L(1),M(0,L(1)))} = η3 + η5 + η6 + η7

35/56



The ‘partial’ indirect effect

ALY = a

AM = a′
M

L

Y

E{Y (a,L(a),M(a′,L(a)))}

= γ0 + γ1a + γ2a′ + γ3aa′

= η0 + (η1 + η2 + η4)a + η3a′

+ (η5 + η6 + η7)aa′

This parameterization leads to 4 distinct instances of the partial indirect
effect, i.e.

E{Y (0,L(0),M(1,L(0)))− Y (0,L(0),M(0,L(0)))} = η3
= pure partial indirect effect= γ2

E{Y (1,L(1),M(1,L(1)))− Y (1,L(1),M(0,L(1)))} = η3 + η5 + η6 + η7
= total partial indirect effect= γ2 + γ3

only 2 of which can be recovered from a simpler natural effect model that
separates the pathway corresponding to the partial indirect effect from its
complement.
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The ‘partial’ indirect effect

Note that, as compared to the other two instances, the pure and total partial
indirect effect can be recovered from a more simple hypothetical target trial,
i.e. one in which only 2 (rather than 3) separable aspects of treatment are
manipulated (because two aspects are collapsed into one).
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Three estimation approaches for partial indirect effects
[Steen et al., 2017a, VanderWeele and Vansteelandt, 2013]

1 Sequential approach [VanderWeele and Vansteelandt, 2013]

• fit a NEM for E{Y (a,L(a′),M(a′,L(a′)))},
treating {L,M} as joint mediator

• fit a NEM for E{Y (a,L(a′))} = E{Y (a,L(a′),M(a,L(a′)))},
treating L as single mediator

• partial indirect effect corresponds to the difference of respective
total (pure) indirect effects or pure (total) direct effects

• yields 2 out of 4 instances of the partial indirect effect, neither of
which corresponds to a pure or total partial indirect effect
−→ complicates interpretation
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Sequential approach (decomposition 1)
[VanderWeele and Vansteelandt, 2013]

η3 + η5 = difference of total indirect effects = difference of pure direct effects

AY = a

ALM = a′
M

L

Y

E{Y (a,L(a′),M(a′,L(a′)))}

= η0 + η1a + η2a′ + η3a′

+ η4aa′ + η5aa′ + η6a′a′ + η7aa′a′

AMY = a

AL = a′
M

L

Y

E{Y (a,L(a′),M(a,L(a′)))}

= η0 + η1a + η2a′ + η3a

+ η4aa′ + η5aa + η6a′a + η7aa′a

AY = a

AM = a′′

AL = a′
M

L

Y

E{Y (a,L(a′),M(a′′,L(a′)))}

= η0 + η1a + η2a′ + η3a′′

+ η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′
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Sequential approach (decomposition 2)
[VanderWeele and Vansteelandt, 2013]

η3 + η6 = difference of pure indirect effects = difference of total direct effects

AY = a

ALM = a′
M

L

Y

E{Y (a,L(a′),M(a′,L(a′)))}

= η0 + η1a + η2a′ + η3a′

+ η4aa′ + η5aa′ + η6a′a′ + η7aa′a′

AMY = a

AL = a′
M

L

Y

E{Y (a,L(a′),M(a,L(a′)))}

= η0 + η1a + η2a′ + η3a

+ η4aa′ + η5aa + η6a′a + η7aa′a

AY = a

AM = a′′

AL = a′
M

L

Y

E{Y (a,L(a′),M(a′′,L(a′)))}

= η0 + η1a + η2a′ + η3a′′

+ η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′
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Three estimation approaches for partial indirect effects
[Steen et al., 2017a, VanderWeele and Vansteelandt, 2013]

2 Direct approach based on weighted regression of imputed outcomes
[Steen et al., 2017a]

• fit a NEM for E{Y (a,L(a′),M(a′′,L(a′)))}

= E

[
E(Y |A = a,L,M,C)

Pr(L|A = a′,C)
Pr(L|A = a′′,C)

∣∣∣∣A = a′′
]

= E

[
E(Y |A = a,L,M,C)

Pr(M|A = a′′,L,C)
Pr(M|A = a′,L,C)

∣∣∣∣A = a′
]

• aims for three-way decomposition of the total effect

• requires an imputation model and a model for either of the
mediator densities

• partial indirect effect is directly captured by model parameter(s)

• yields all 4 instances of the partial indirect effect

• not implemented in medflex! (requires manual coding)
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Direct approach via weighed imputation (option 1)
[Steen et al., 2017a]

First replicate the data along unobserved (a, a′, a′′) combinations

A a a′ a′′ M(a′′) Y (a,L(a′),M(a′′,L(a′)))

1 1 1 1 1 M1 Y1

...
...

...
...

...
...

...

n 0 0 0 0 Mn Yn

Then regress imputed counterfactual outcomes Ŷ (a,L(a′),M(a′,L(a′))) on a,
a′ and a′′ (and possibly an adjustment set C) weighed by

Pr(L = Li |A = a′,C)
Pr(L = Li |A = a′′,C)
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Direct approach via weighed imputation (option 1)
[Steen et al., 2017a]

First replicate the data along unobserved (a, a′, a′′) combinations

A a a′ a′′ M(a′′) Y (a,L(a′),M(a′′,L(a′)))

1 1 1 1 1 M1 Y1

1 1 0 1 1 M1 Ŷ1(0,L1(1),M1(1,L1(1)))
...

...
...

...
...

...
...

n 0 0 0 0 Mn Yn

n 0 1 0 0 Mn Ŷn(1,Ln(0),Mn(0,Ln(0)))

Then regress imputed counterfactual outcomes Ŷ (a,L(a′),M(a′,L(a′))) on a,
a′ and a′′ (and possibly an adjustment set C) weighed by

Pr(L = Li |A = a′,C)
Pr(L = Li |A = a′′,C)
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Direct approach via weighed imputation (option 1)
[Steen et al., 2017a]

First replicate the data along unobserved (a, a′, a′′) combinations

A a a′ a′′ M(a′′) Y (a,L(a′),M(a′′,L(a′)))

1 1 1 1 1 M1 Y1

1 1 0 1 1 M1 Ŷ1(0,L1(1),M1(1,L1(1)))

1 1 1 0 1 M1 Ŷ1(1,L1(1),M1(1,L1(1)))

1 1 0 0 1 M1 Ŷ1(0,L1(1),M1(1,L1(1)))
...

...
...

...
...

...
...

n 0 0 0 0 Mn Yn

n 0 1 0 0 Mn Ŷn(1,Ln(0),Mn(0,Ln(0)))

n 0 0 1 0 Mn Ŷn(0,Ln(0),Mn(0,Ln(0)))

n 0 1 1 0 Mn Ŷn(1,Ln(0),Mn(0,Ln(0)))

Then regress imputed counterfactual outcomes Ŷ (a,L(a′),M(a′,L(a′))) on a,
a′ and a′′ (and possibly an adjustment set C) weighed by

Pr(L = Li |A = a′,C)
Pr(L = Li |A = a′′,C)
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Direct approach via weighed imputation (option 2)
[Steen et al., 2017a]

First replicate the data along unobserved (a, a′, a′′) combinations

A a a′ a′′ M(a′′) Y (a,L(a′),M(a′′,L(a′)))

1 1 1 1 1 M1 Y1

1 1 0 1 1 M1 Ŷ1(0,L1(1),M1(1,L1(1)))

1 1 1 1 0 M1 Ŷ1(1,L1(1),M1(1,L1(1)))

1 1 0 1 0 M1 Ŷ1(0,L1(1),M1(1,L1(1)))
...

...
...

...
...

...
...

n 0 0 0 0 Mn Yn

n 0 1 0 0 Mn Ŷn(1,Ln(0),Mn(0,Ln(0)))

n 0 0 0 1 Mn Ŷn(0,Ln(0),Mn(0,Ln(0)))

n 0 1 0 1 Mn Ŷn(1,Ln(0),Mn(0,Ln(0)))

Then regress imputed counterfactual outcomes Ŷ (a,L(a′),M(a′,L(a′))) on a,
a′ and a′′ (and possibly an adjustment set C) weighed by

Pr(M = Mi |A = a′′,L,C)
Pr(M = Mi |A = a′,L,C)
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Three estimation approaches for partial indirect effects
[Steen et al., 2017a, VanderWeele and Vansteelandt, 2013]

3 Direct approach based on weighted regression of observed outcomes

• fit a NEM for E{Y (a,L(a),M(a′,L(a)))}

= E

[
Y
Pr(M|A = a′,L,C)
Pr(M|A = a,L,C)

∣∣∣∣A = a

]
• aims for two-way decomposition of the total effect

• requires a model for the density of M

• partial indirect effect is directly captured by model parameter(s)

• yields 2 out of 4 instances of the partial indirect effect,
corresponding to the pure and total partial indirect effect

• technically not implemented in medflex, but medflex can be
tricked! I.e. corresponds to weighting-based estimator for single
mediator setting upon conditioning on previous mediator L in model
for density of M
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Preferred approach?

If the main target of interest is the partial indirect effect, fitting a NEM for

E{Y (a,L(a),M(a′,L(a)))} = γ0 + γ1a + γ2a′ + γ3aa′

based on weighted regression of observed outcomes can be considered the
preferred approach, because it

1 aligns best with a realistic (or at least: imaginable) hypothetical trial

2 aims for a decomposition that can be obtained under weaker structural
assumptions (allowing for unmeasured L− Y confounding)
[Miles et al., 2017b, Steen and Vansteelandt, 2018]

3 reduces modeling demands

4 can easily be estimated with available (weighting-based) machinery in
medflex

A

M

L

Y

U
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The appeal of natural effect modeling
as compared to alternative counterfactual-based approaches

Direct parameterization and estimation of path-specific of interest via
natural effect models may be attractive because of various reasons:

• no more need to derive closed-form expressions for each specific
combination of (i) and (ii)

SPSS and SAS macros [Valeri and VanderWeele, 2013]

Stata module PARAMED [Emsley and Liu, 2013]

• offers an alternative to computer-intensive Monte Carlo integration
which has been suggested to deal with intractable effect expressions
[Imai et al., 2010] (whenever sandwich variance estimator is available for
inference)

R package mediation [Tingley et al., 2014]

Stata module GFORMULA [Daniel et al., 2011]
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https://www.hsph.harvard.edu/linda-valeri/computational-tools/
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https://ideas.repec.org/c/boc/bocode/s457204.html


The appeal of natural effect modeling
as compared to alternative counterfactual-based approaches

• alleviates modeling demands (as only (i) or (ii) needs to be (correctly)
specified, at the expense of a correctly specified natural effect model in
observational studies) and may thus reduce risk of modeling bias and
help to avoid the g-null paradox

• offers an elegant framework for hypothesis testing, i.e. hypotheses of
interest can be captured by (a linear combination of) targeted model
parameters

• imposing parsimonious model structures may be helpful in more
complex settings, especially for extensions to multiple (causally ordered)
mediators

• fits elegantly with separable effects interpretation, also in settings with
multiple mediators, e.g. E(Y |do(AY = a,AL = a′,AM = a′′))
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For those anxious to apply these methods...

Further guidance and detailed R code demonstrating

• features in medflex

• how to apply the estimation approaches for the partial indirect effect

• using the same illustrating example

available at https://github.com/jmpsteen/medflex-workshopUKCIM2017
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