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Overview of Course

Part 1a: Motivation & basics of causal modelling

Part 1b: Introduction to mediation: definitions, assumptions,
LSEMs, mediational g-formula

Part 2a: Mediation analysis using natural effects models
with medflex

Part 2b: Special topics: treatment-induced confounding,
interactions, multiple mediators etc.
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Course Aims

• Introduce main concepts and principles of causal
mediation modelling and inference

• ... to help you get a start when reading more advanced
research papers on the topic

• And: give you a first idea of practical implementation in R.

Many references at the end — but also: please ask us!
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Statistics in Practice!

Not only “How to...?”

But also:

• What models and methods are suitable for the research
question?
• ... and under what assumptions will they give useful and

reliable results?
• ... are these assumptions plausible / testable / defendable

in any given data setting?



Motivation
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Mediational Research Questions

Example: Randomised placebo-controlled trial

Wanted: effect of a new drug over and above the placebo
effect; i.e. want the direct effect of the drug, not its indirect
effect via ‘patient’s expectation’.

Note: here, we investigate the target of inference, the direct
effect, by design.

Can use similar ideas to investigate indirect placebo effect.

Often, such trials not possible
⇒ need suitable assumptions and methods.
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Mediational Research Questions

Example: Randomised placebo-controlled trial

⇒ keep this design in mind as possible target trial for
mediational research questions.

Target trial: to clarify your (causal) research question, describe
your ideal trial — putting aside practical / ethical and financial
issues, but not the laws of physics. (Hernán et al, 2008)
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Example: Attitudes to immigration
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Example: Attitudes to immigration

A = binary: report on pos./neg. aspects of immigration (randomised)
M = (quasi-contin.) mediator: level of anxiety
Y1 = (quasi-contin.) measure of attitude
Y2 = binary measure of attitude (pro/con)

C = observed covariates: gender, age, income, education etc.



9

Example: Attitudes to immigration

A = binary: report on pos./neg. aspects of immigration (randomised)
M = (quasi-contin.) mediator: level of anxiety
Y1 = continuous measure of attitude (scale)
Y2 = binary measure of attitude (pro/con)
C = observed covariates: gender, age, income, education etc.

Question: role of anxiety in forming attitude towards immigration?
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Example: SES and Health



11

Example: SES and Health
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Aside

Note:

The direct or the indirect effect do not exist...

– always relative to the (set of) mediator(s) considered.

– even with given mediators, may depend on other choices.



Quick Tour: Causal Modelling
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Association vs. Causation
do(·)-Notation

Association: observing A helps to predict Y .

Causation: manipulating A changes distribution of Y .

Notation: do(·) for intervention (cf. Pearl, 2000, various)

P (Y | intervene to set A = a) = P (Y |do(A = a))

often used together with causal directed acyclic graphs (DAGs).
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Association vs. Causation
Potential Responses (PRs)

Association: observing A helps to predict Y .

Causation: manipulating A changes distribution of Y .

Alternative notation: potential response Y (a) (cf. Rubin, 1974)

Y (a) = value that Y would take if an intervention sets A = a.

P (Y | intervene to set A = a) ∼= P (Y (a))

also know as counterfactuals, because {Y (a), Y (a′); a 6= a′}
can logically not be observed together.

⇒ need counterfactuals for certain mediation effect parameters.
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Identification

E(Y |do(A = a)) or E(Y (a)) is identified
with C pre-exposure covariates
from observational data on (Y,A,C) under

Assumption of no unobserved confounding given C:

• graphically: all backdoor-paths from A to Y blocked by C;

• with potential responses: Y (a)⊥⊥A | C.

Consistency: if A = a then Y = Y (a).
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G-Formula

Identified by the g-formula (standardisation)

E(Y |do(A = a)) or E(Y (a))

=
∑

c

E(Y | A = a,C = c)P (C = c)

⇒ can identify e.g. average causal effect (A binary)

ACE = E(Y (1))− E(Y (0)).

(g-formula: Robins (1986))



Direct and Indirect Effects
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Background

• Traditionally (in many fields): mediation = path analysis,
based on linear structural equation models (LSEMs).

• Advantage: LSEMs simple parameterisation with
apparently intuitive meaning of parameters in terms of
direct effects.

• Disadvantage: LSEMs overly simplistic, do not carry over
to non-linear settings (e.g. binary variables, odds-ratios...).
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Background

Model-free definition of (in)direct effects:

Wanted: notions of (in)direct effects that do not pre-suppose a
certain parametric model.

⇒ ideal trial for research question, e.g. placebo-type trick

⇒ & use do(·) or potential responses to define our target!
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Notation

Y = response

M = mediating variable(s)

A = exposure / treatment

Y (a,m) potential response under intervention in A and M
or also p(y | do(A = a,M = m))

M(a) pot. response of mediator under intervention in A

Consistency: if A = a then Y = Y (a) = Y (a,M(a)).



22

Controlled Direct Effect

First idea: intervene in A while fixing M (e.g. at baseline)

CDE = E(Y |do(A = a,M = 0))− E(Y |do(A = a′,M = 0))

or with PRs CDE = E(Y (A = a,M = 0)−Y (A = a′,M = 0))

Advantage: CDE conceptually simple; identifying conditions
straightforward; can be related to parameters of variety of regression
models; will suffice in many applications.

Disadvantage: no corresponding notion of indirect effect
— in fact: M could be prior / post A or both could be independent of
each other with same CDE.
⇒ does not fully capture what we might mean by ‘mediation’.
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G-Formula for CDE

Under

(1) no-unobserved-confounding of A and Y given C1 and

(2) no-unobserved-confounding of M and Y given (A,C1, C2):

E(Y (a,m)) =
∑
c1,c2

E(Y | A = a,M = m,C2 = c2, C1 = c1)

×P (C2 = c2|A = a,C1 = c1)P (C1 = c1).

(General identification of joint effects see Shpitser & Pearl (2006))
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Natural (In)Direct Effects

Motivation

In placebo trial, M is not controlled at fixed value
— instead ‘pretend’ A has different value:

Control (placebo) group will think they receive treatment, but
they do not receive active ingredient.

(Unethical, but logically feasible.)

⇒ mediator is M(a′), while actual treatment is different A = a.
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Natural (In)Direct Effects

Definition (Robins & Greenland, 1992; Pearl 2001)

NDE = E(Y (a′,M(a′))− Y (a,M(a′)))

NIE = E(Y (a,M(a′))− Y (a,M(a)))

Or: other contrasts, e.g. relative risks.
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Effect decomposition

Assuming only consistency; no particular parametric model.

Total effect =

E(Y (a′)− Y (a)) = E(Y (a′,M(a′))− Y (a,M(a)))

= E(Y (a′,M(a′))−Y (a,M(a′)))

+E(Y (a,M(a′))− Y (a,M(a)))

= NDE +NIE

⇒ proportion mediated = NIE/(NDE +NIE)
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Interactions

Note, if (outcome) model non-linear / with interactions, typically:

E(Y (1,M(1))− Y (0,M(1)))︸ ︷︷ ︸
total DE (NDE)

6= E(Y (1,M(0))− Y (0,M(0)))︸ ︷︷ ︸
pure DE

and similar for indirect effects...
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Interactions

Note, if (outcome) model non-linear / with interactions, typically:

E(Y (0,M(1))− Y (0,M(0)))︸ ︷︷ ︸
pure IE (NIE)

6= E(Y (1,M(1))− Y (1,M(0)))︸ ︷︷ ︸
total IE
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Nested Counterfactual

Key quantity: nested counterfactual Y (a,M(a′))

— genuinely counterfactual (‘cross-world’).

Interpretation in terms of do(·) based on extended model:

assume A can be separated into an aspect AM affecting only
M and another aspect AY affecting only Y :

⇒ target of inference E(Y | do(AY = a,AM = a′)).
(Robins & Richardson, 2011; Didelez, 2019)
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Separable Effects

⇒ can make sense of Y (a,M(a′)) in terms of augmented
system (DAG) and do-interventions — placebo-type trial!

Observational data: always A ≡ AM ≡ AY ; identification??
(Robins & Richardson, 2011; Didelez, 2019)
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Mediational G-Formula

C observed covariates, not affected by A or M (non-descendants)

Under identifying assumptions:

E(Y (a,M(a′))) =
∑
m

E(Y | A = a,M = m, c)

× p(m | A = a′, c)p(c)

(or conditionally on (subset of) C)
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NDE/NIE: Identifying Assumptions

As before: consistency, positivity

No unobserved confounding

Y (a,m)⊥⊥A | C, M(a)⊥⊥A | C,

Y (a,m)⊥⊥M | (A = a,C)

Cross-world independence

Y (a,m)⊥⊥M(a′) | C

Or: assume extended causal DAG with separable effects.
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Key Assumptions – Graphically

No unobserved A-Y confounding given C — Y (a,m)⊥⊥A | C:

Note: automatically true when A randomised.
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Key Assumptions – Graphically

No unobserved A-M confounding given C — M(a)⊥⊥A | C:

Note: automatically true when A randomised.
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Key Assumptions – Graphically

No unobserved M -Y confounding given C —
Y (a,m)⊥⊥M | (A = a,C):

Note: NOT automatically true even when A randomised!
Cannot randomise M in same experiment.
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Key Assumptions – Graphically

Cross-world independence: Y (a,m)⊥⊥M(a′) | C
e.g. no treatment-induced M -Y confounding by some L,
observed nor unobserved!

Note: cannot be verified in ANY experiment!
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Treatment-Induced Confounding

Why is treatment-induced confounding
a problem?

Y (a,M(a′)) = Y (a, L(a),M(a′, L(a′)))

⇒ no empirical joint information on (L(a), L(a′))!

Note: under LSEM, problem resolved by assumption of
constant individual-level effects. (DeStavola et al, 2015)

Note also: no problem for CDE — choose C2 = L.
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Treatment-Induced Confounding

Why is treatment-induced confounding
a problem?

Y (a,M(a′)) = Y (a, L(a),M(a′, L(a′)))

⇒ separation of paths due to L unclear

L also called ‘recanting witness’ (Avin et al, 2005)

Target of inference may not be meaningful / of any practical
relevance. Instead: methods for multiple mediators.
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Approaches to Inference

(1) For certain parametric models for p(y|a,m, c and p(m|a, c),
analytic expressions for NDE and NDE can be derived, e.g.
LSEM (R package sem), or see VanderWeele (2015)

(2) Fit ‘pieces’ of mediational g-formula and plug-in or use
MC-methods
⇒ R package mediation by Imai et al (2010)
see also Stata command gformula Daniel et al. 2011
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Approaches to Inference

(3) Specify model for E(Y (a,M(a′))) with explicit parameters
for direct / indirect effect, possibly with interaction effect
(use suitable / desired link function); fitting requires
‘imputing’ of missing information using auxiliary (working)
models for either mediator or outcome;

⇒ R package medflex (Steen et al., 2017)

(4) Other more robust approaches exist but are complicated to
implement (Tchetgen Tchetgen & Shpitser, 2012).
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Structural Equation Models (SEMs)

Structural equation models:
– responses as functions of inputs;
– functions invariant to how input comes about

(by observation or intervention)!

Example: C := εC , A := fA(C, εA), Y := fY (A,C, εY )

⇒ potential responses (binary A):

Y (1) := fY (1, C, εY ) Y (0) := fY (0, C, εY )

⇒ joint distribution of (εC , εA, εY ) induces
joint distribution of (C,A, Y, Y (1), Y (0)).
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NPSEM-IE

Example: C := εC , A := fA(C, εA), Y := fY (A,C, εY )

⇒ potential responses (binary A):

Y (1) := fY (1, C, εY ) Y (0) := fY (0, C, εY )

– without specification of f(·): non-parametric

– with independent (εC , εA, εY ): independent errors

⇒ “NPSEM-IE”
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Linear SEMs (LSEMs)

Now: assume functional relations are all linear, e.g.

Y := α1A+ α2C + εY

Note: implies constant individual level effect — for person i:

Y i(1)− Y i(0) = α1 · 1 + α2C
i + εiY − α1 · 0− α2C

i − εiY = α1.

⇒ makes maths very simple (also wrt. potential responses).
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Background on LSEM

Y = (Y1, . . . , YK) set of endogenous variables

X = (X1, . . . , XL) set of exogenous variables

General structure: (Bollen, 1989)

Y = BY + ΓX + ξ

B,Γ conformable matrices of parameters (coefficients)

ξ = noise, ξ⊥⊥X

Endogenous: (interrelated) responses we are interested in

Exogenous: fixed by design, randomised or always conditioned
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Background on LSEM

Y = BY + ΓX + ξ

If B lower triangular⇒ representable by DAG on (Y1, . . . , YK)

If Ψ = V ar(ξ) diag. ⇒ no unobserved confounding

If both⇒ recursive model.

Further, let Φ = V ar(X).
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Background on LSEM

Y = BY + ΓX + ξ

Identification:

place restrictions on B,Γ,Ψ,Φ so that unique solutions in terms
of Σ = V ar(Y) exist.

⇒ every recursive model is identified.

Various sufficient rules for other models.

Generally no necessary & sufficient rules (Drton & Weihs, 2016).
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Background on LSEM

LSEMs encompass

• path analyses

• measurement error models

• measurement models for latent constructs (e.g. IQ)

• growth curves

• factor analyses

• instrumental variables, etc.
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Causal Mediation and LSEMs

Assume simple LSEM:

M = β0 + β1A+ β2C + εM

Y = θ0 + θ1A+ θ2M + θ3C + εY
Hence:

Y (a,M(a′)) = θ0 + θ1a+ θ2(β0 + β1a
′ + β2C + εM︸ ︷︷ ︸
M(a′)

) + θ3C + εY

re-arranging:

Y (a,M(a′)) = θ0 + θ2β0︸ ︷︷ ︸
const.

+θ1a+θ2β1a
′+(θ2β2 + θ3)︸ ︷︷ ︸

coeff. of C

C+θ2εM + εY︸ ︷︷ ︸
noise

⇒ NDE will be in terms of θ1, NIE in terms of θ2β1
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Causal Mediation and LSEMs
Path-Tracing

Y (a,M(a′)) = θ0 + θ2β0︸ ︷︷ ︸
const.

+θ1a+θ2β1a
′+(θ2β2 + θ3)︸ ︷︷ ︸

coeff. of C

C+θ2εM + εY︸ ︷︷ ︸
noise

⇒ path-tracing formula

known from Baron & Kenny (1986)

total effect: θ1 + β1θ2.

Generalises to more complex LSEMs / graphs.
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Limitations of LSEMs

Simplicity breaks down when using more complex models, e.g.
when

Y = θ0 + θ1A+ θ2M + θ∗AM + θ3C + εY

Then Y (a,M(a′)) = const. +

+(θ1 + θ∗β0)a+ θ2β1a
′ + θ∗β1aa

′︸ ︷︷ ︸
interact.

+(θ2β2 + θ3)C + (θ∗β2)aC︸ ︷︷ ︸
interact.

+ noise.
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Limitations of LSEMs

Assume M or Y or both binary: LSEM not sensible (does not
constrain M,Y ∈ {0, 1}).

Instead: e.g. logistic model for each of p(m|a, c) and p(y|m, a, c)

⇒ NO simple (logistic) model for E(Y (a,M(a′)))!
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Example: Attitudes to immigration
(Brader et al, 2008)

A = treat= news report on pos/neg aspects of immigration;
M = anxiety= anxiety (on scale 1-4);
Y = immigr= attitude towards immigration (quasi-contin.);

Assumptions?

– treat randomised⇒ no A- confounding

– C = {gender, age, education income} for M -Y confounding?

– consequences of news-report-style M -Y confounder?
other psychological pathways?

(– constant individual level effects?)



53

Example: Attitudes to immigration
with sem package

A = treat= news report on pos/neg aspects of immigration;
M = anxiety= anxiety (on scale 1-4);
Y = immigr= attitude towards immigration (quasi-contin.);

Specify structural equations:
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Example: Attitudes to immigration
with sem package

Fit SEM: specify exogenous variables
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Example: Attitudes to immigration
with sem package

Fit SEM: output
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Example: Attitudes to immigration

Summary: assuming simple LSEM,

⇒ direct effect θ̂1 = 0.23;

indirect effect β̂1θ̂2 = 0.466× 0.366 = 0.17

⇒ total effect = θ̂1 + β̂1θ̂2 = 0.4

Proportion mediated: 0.17/0.4 = 0.425

Note: LSEM not a good fit for these data, st.errors way too
optimistic (assume normality).
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LSEMs — Implementation

• Can do individual regressions ‘by hand’.

• Better: use R package sem

⇒ all regressions within one model (incl. standard errors)

• Also: R package lavaan

⇒ designed for mediation analysis;
outputs desired (in)direct effects with st.errors.

• Many other SEM packages!
Also many generalisations available.
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Using Mediational G-Formula

Reminder:

E(Y (a,M(a′))) =
∑
m

E(Y | A = a,M = m, c)

× p(m | A = a′, c)p(c)

Idea: assume parametric models for E(Y | A = a,M = m,C)
and p(m | A = a′, C) and combine.

Inference: bootstrap, or MC based on sampling distributions of
parameters of both models.

⇒ reliance on correct specification of both models.
(Imai et al, 2010; Daniel et al, 2011)
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Example: Attitudes to immigration
with mediation package

Linear case: with continuous outcome — replicate sem results
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Example: Attitudes to immigration
with mediation package

Now: binary outcome, non-linear model

−→ immigrbin= attitude towards immigration (binary: pro/con);

⇒ linear model p(m|a, c), logistic model p(y|m, a, c)
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Example: Attitudes to immigration
with mediation package

Output: mean differences of probabilities!

Suggests: a considerable proportion of the effect of reporting style
on attitude is mediated by anxiety.

Some indication for treatment-mediator interaction.
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Notes on mediation

• Only outputs mean-differences

• Allows for survival outcomes

• Includes tools for sensitivity analysis

• Nothing to prevent g-null paradox...
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G-Null Paradox
(Robins & Wasserman, 1997)

Note:
choice of models for p(y|a,m, c) and p(m|a, c) will implicitly
restrict E(Y (a,M(a′))).

Example: combine linear (for Y ) and logistic regression (for M )

⇒ total effect can only be zero if both NDE and NIE are zero
— there is no canceling out of NDE and NIE possible.

⇒ might inadvertently impose undesirable restrictions!
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Natural Effects Models
(Lange et al, 2012)

Model for E(Y (a,M(a′))) (or suitable link-function), e.g.

E(Y (a,M(a′))) = η0 + η1a+ η2a
′

or conditional on baseline covariates C

E(Y (a,M(a′))|C = c) = η0 + η1a+ η2a
′ + η3c

⇒ η1, η2 explicit parameters for direct/indirect effects.

We never observe different values a, a′, so how on Earth should
we ever be able to fit such a model???

⇒ Johan will tell you!
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(L)SEMs versus G-Formula

• LSEMs mathematically simple, for practice too simple (?)
• LSEMs strong structural & parametric assumptions.
• G-formula: weaker structural assumptions, and flexible

with parametric assumptions.
But: typically no exact inference possible.
• mediation package only outputs mean differences.
• Careful: justify absence of treatment-induced confounding

and avoid g-null paradox.
• Alternatives: natural effect models→ Part 2

or randomised intervention approach
(Didelez et al, 2006; Vansteelandt & Daniel, 2016)
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G-Formula versus NE Models

• In principle: the same (e.g. with saturated models)

• NE models avoid g-null paradox, and less parametric
modelling altogether

• NE models use immediately interpretable parameters /
less computationally intensive than MC methods

• NE models fit elegantly with separable effects
interpretation in terms of E(Y |do(AY = a,AM = a′))!
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Causal Mediation Analysis
Outlook

Separable effects approach of Robins & Richardson (2011) has
been extended to

• survival settings with time-varying mediator (Didelez, 2019)

• ... using additive hazards model (Aalen et al, 2019)

• competing risks (Stensrud et al, 2019)
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Time-To-Event Example
(Aalen et al, 2019)

• Data: RCT (SPRINT), N = 9000 — target: relative survival;
method: adaptation of g-formula to survival outcome

• High-bp patients randomised to A = intensive or standard trtm.
• T = time to kidney failure (as side effect)
• Mt = diastolic bp (rep. measured while alive)

(Red line: with measurement error in M )
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Causal Mediation Analysis
Summary

For realistic and plausible data analyses:
must move away from linear SEMs.

Over many technical issues, must not forget most important
points:

• What is the research question / target of inference and is it
adequately addressed by causal mediation approaches?
Do we believe at least hypothetically in separable effects?

• Are the identifying assumptions plausibly met?

– no unobserved confounding especially of Y and M?
– no treatment-induced confounding of Y and M?
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